Stability of accretion discs threaded by a strong magnetic field

نویسندگان

  • R. Stehle
  • H. C. Spruit
چکیده

We study the stability of poloidal magnetic fields anchored in a thin accretion disc. The two-dimensional hydrodynamics in the disc plane is followed by a grid-based numerical simulation including the vertically integrated magnetic forces. The 3–dimensional magnetic field outside the disc is calculated in a potential field approximation from the magnetic flux density distribution in the disc. For uniformly rotating discs we confirm numerically the existence of the interchange instability as predicted by Spruit, Stehle & Papaloizou (1995). In agreement with predictions from the shearing sheet model, discs with Keplerian rotation are found to be stabilized by the shear, as long as the contribution of magnetic forces to support against gravity is small. When this support becomes significant, we find a global instability which transports angular momentum outward and allows mass to accrete inward. The instability takes the form of a m = 1 rotating ‘crescent’, reminiscent of the purely hydrodynamic nonlinear instability previously found in pressure-supported discs. A model where the initial surface mass density Σ(r) and Bz(r) decrease with radius as power laws shows transient mass accretion during about 6 orbital periods, and settles into a state with surface density and field strength decreasing approximately exponentially with radius. We argue that this instability is likely to be the main angular momentum transport mechanism in discs with a poloidal magnetic field sufficiently strong to suppress magnetic turbulence. It may be especially relevant in jet-producing discs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of the temperature profile of the accretion disk on the structure of jets and outflows around protostars

Magnetic fields play an important role in creating, driving, and in the evolution of outflows and jets from protostars and accretion disks. On the other hand, the temperature profile of the accretion disks may also affect the structure of the magnetic field and outflows. In this paper, we use the self-similar method in cylindrical coordinates to investigate the effect of the temperature profile...

متن کامل

Accretion Discs with Strong Toroidal Magnetic Fields

Simulations and analytic arguments suggest that the turbulence driven by magnetorotational instability (MRI) in accretion discs can amplify the toroidal (azimuthal) component of the magnetic field to a point at which magnetic pressure exceeds the combined gas + radiation pressure in the disc. Arguing from the recent analysis by Pessah and Psaltis, and other MRI results in the literature, we con...

متن کامل

On the difficulty of launching an outflow from an accretion disk

We solve for the local vertical structure of a thin accretion disk threaded by a poloidal magnetic field. The angular velocity deviates from the Keplerian value as a result of the radial Lorentz force, but is constant on magnetic surfaces. Angular momentum transport and energy dissipation in the disk are parametrized by an α-prescription, and a Kramers opacity law is assumed to hold. We also de...

متن کامل

Stability of relativistic jets from rotating, accreting black holes via fully three-dimensional magnetohydrodynamic simulations

Rotating magnetized compact objects and their accretion discs can generate strong toroidal magnetic fields driving highly magnetized plasmas into relativistic jets. Of significant concern, however, has been that a strong toroidal field in the jet should be highly unstable to the nonaxisymmetric helical kink (screw) m = 1 mode leading to rapid disruption. In addition, a recent concern has been t...

متن کامل

Compressibility and local instabilities of differentially rotating magnetized gas

We study the stability of compressible cylindrical differentially rotating flow in the presence of the magnetic field, and show that compressibility alters qualitatively the stability properties of flows. Apart from the well-known magnetorotational instability that can occur even in incompressible flow, there exist a new instability caused by compressibility. The necessary condition of the newl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001